# The lack of $\mathbf{C 2}$ molecular symmetry in (1R,2R,3S,6S)-3,6-dibenzyloxycyclo-hex-4-ene-1,2-diol 

Robert W. Clark, Ilia A. Guzei,* Sergei A. Ivanov, Steven D. Burke and William T. Lambert

Chemistry Department, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
Correspondence e-mail: iguzei@chem.wisc.edu

Received 2 March 2001
Accepted 10 April 2001
The results of a single-crystal X-ray experiment and density functional theory calculations performed for the title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$, demonstrate that the lowest energy conformation of this molecule does not contain $C 2$ molecular symmetry.

## Comment

We have synthesized the chiral title molecule, (I), during the course of our work on the synthesis of natural products related to marine sponge extracts. We report herein the structure of (I), discuss its molecular symmetry and present the results of density functional theory (DFT) calculations (Schrödinger Inc., 1998; all geometry optimizations were performed with the B3LYP hybrid functional and Pople basis set 6-31161*|*).

(I)

The absolute stereochemistries of the chiral centers were assigned as $1 R, 2 R, 3 S$ and $6 S$ from knowledge of the synthesis. The benzyloxy groups occupy pseudo-equatorial positions while the hydroxyl substituents are located in axial positions. Unfavorable steric interactions are minimized when the bulky substituents occupy pseudo-equatorial positions and this feature is similarly observed in the related compounds 3,5-dicyano-6-(2-methoxy-1,1,2-trimethylpropyl)cyclohexene, (II), cis-1,3-dicyano-4-(2-methoxy-1,1,2-trimethylpropyl)cyclohexene and cis-1,5-dicyano-4-(2-methoxy-1,1,2-trimethylpropyl)cyclohexene (Borg et al., 1984).

The conformation of the cyclohexene ring in (I) is a halfchair. Atoms C1, C2, C3 and C6 are planar within 0.02 Å. Atoms C4 and C5 are located 0.372 (4) and 0.388 (4) Å above and below this plane, respectively. The $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$ and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ torsion angles are 18.7 (3) and $18.1(3)^{\circ}$,
respectively. Relevant torsion angles in the related structures (II), 5-n-butyl-3-hydroxymethyl-6-methylcyclohexen-4-ol (Batey et al., 1999), (+)-(1S,2S,3S,6R,1'S)-methyl-2-(1-hydroxy-ethyl)-3-hydroxymethyl-6-methyl-4-cyclohexene-1-carboxylate and (+)-(1S,2S,3S,6R, $\left.1^{\prime} S, 1^{\prime \prime} R\right)$-methyl-2,3-bis(1-hydroxy-ethyl)-6-methyl-4-cyclohexene-1-carboxylate (Ainsworth et al., 1995) range from 5.9 to $25.4^{\circ}$. Notably, the DFT-calculated torsion angles $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5\left(13.9^{\circ}\right)$ and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-$ $\mathrm{C} 4\left(13.9^{\circ}\right)$ of cyclohexene, (III), fall in the middle of this range.

Several statistically significant differences are observed in the chemically equivalent bond lengths and torsion angles of (I). The $\mathrm{O} 2-\mathrm{C} 4$ distance $[1.428$ (2) $\AA$ ] is $0.010 \AA$ longer than the related $\mathrm{O} 3-\mathrm{C} 5$ distance $[1.418$ (2) $\AA$ ]. In 4574 relevant compounds containing $8321 \mathrm{Csp}^{3}-\mathrm{OH}$ bonds reported to the Cambridge Structural Database (CSD; Allen \& Kennard, 1993), the corresponding values averaged $1.424(15) \AA$. Additionally, the $\mathrm{O} 4-\mathrm{C} 14$ distance $[1.430$ (2) $\AA$ ] is $0.016 \AA$ longer than $\mathrm{O} 1-\mathrm{C} 7[1.414$ (2) $\AA$ ] , and the torsion angles $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13\left[-31.6(3)^{\circ}\right]$ and $\mathrm{O} 4-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ $\left[-56.5(3)^{\circ}\right]$ are substantially different. To account for these discrepancies, several DFT geometry optimizations were performed on (I) and (III). The results of calculations for one molecule of (III) verify its optimal geometry to be $C 2$ symmetric. However, this is not observed in the case of (I). The DFT-calculated molecular parameters of (I) are in close agreement with the experimentally observed values. One exception to this is that the calculated $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$ and $\mathrm{O} 4-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ torsion angles are 41.0 and $69.4^{\circ}$, respectively. Although $\pi$-stacking interactions are not observed, other crystal-packing forces likely contribute to this difference. To test the hypothesis that the $C 2$-symmetric geometry of (I) is not the lowest in energy, DFT calculations were carried out for (I) starting from the symmetrical conformation and consecutively lifting all of the symmetry constraints. In the progress of optimization, the molecule departed from the symmetrical conformation. Additionally, DFT calculations were performed on (I) with two additional water molecules fixed at the observed $\mathrm{O} 3 \cdots \mathrm{O} 2\left(1-x, y-\frac{1}{2}\right.$, $\left.\frac{1}{2}-z\right)$ and $\mathrm{O} 2 \cdots \mathrm{O} 3\left(1-x, y+\frac{1}{2}, \frac{1}{2}-z\right)$ distances to simulate possible hydrogen bonding in the structure. This structure optimization did not fully converge. [The maximum displacement $\left(2.13 \times 10^{-2}\right)$ and r.m.s. displacement $\left(7.88 \times 10^{-3}\right)$ values were above the standard threshold values of $1.8 \times 10^{-3}$ and $1.2 \times 10^{-3}$, respectively, which in turn is indicative of a flat minimum on the potential energy surface.] Consequently, it is concluded that hydrogen bonding probably does not contribute significantly to this symmetry lowering.

Weak hydrogen-bonding interactions between the hydroxyl substituents of symmetry-related molecules in the lattice of (I) are likely. An intermolecular hydrogen-bonding interaction is observed between donor atom O 3 and acceptor atom $\mathrm{O} 2\left(1-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ (Table 2). The corresponding distances and angles for 2222 compounds with 3998 similar hydrogen bonds in structures reported in the CSD were 2.79 (9) $\AA$ and $166(7)^{\circ}$. The longer O $\cdots$ O separation in (I) is indicative of a weaker hydrogen bond. Interestingly, the chemically equivalent intermolecular $\mathrm{O} 2 \cdots \mathrm{H}-\mathrm{O} 3$ hydrogen-bonding interac-
tion is not observed and also confirms the lack of $C 2$ molecular symmetry. Results of this study demonstrate that the $C 1$ molecular symmetry of (I) is determined by its conformational stability rather than by packing forces alone.


Figure 1
The molecular structure of (I) with displacement ellipsoids shown at the 50\% probability level.

## Experimental

Compound (I) was synthesized from L-diethyl tartrate, (IV), in seven steps. Conversion of (IV) to its acetonide followed by reduction with diisobutylaluminium hydride and addition of vinylmagnesium bromide gave a bis(allylic alcohol), (V), as a 71:23:6 mixture of diastereomers in a $72 \%$ yield. Benzylation of (V) was followed by hydrolysis of the isopropylidene ketal to give the diol in a $92 \%$ yield, which was then acetylated with acetic anhydride to provide the bis(acetate), (VI). Separation of the three stereoisomers was possible at this stage by chromatography on silica gel, providing the desired isomer in $55 \%$ yield along with $35 \%$ of the two undesired isomers. Subjection of diene (VI) to ring-closing metathesis with $3 \mathrm{~mol} \%$ of a 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene-substituted second-generation Grubbs' catalyst (Scholl et al., 1999) in refluxing benzene gave the $(+)$-conduritol E derivative in $93 \%$ yield along with $3 \%$ of unreacted starting material. Cleavage of the acetate esters in basic methanol then provided the title compound, (I), in $96 \%$ yield. The overall yield of the seven-step synthesis was $36 \%$.

## Crystal data

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$
$M_{r}=326.38$
Orthorhombic, $P 2_{1} 2_{1} 2_{2}$
$a=8.5979(9) \AA$
$b=10.1090(10) \AA$
$c=18.9828(18) \AA$
$V=1649.9(3) \AA$
$Z=4$
$D_{x}=1.314 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Bruker CCD-1000 area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: empirical (SADABS; Blessing, 1995)
$T_{\text {min }}=0.946, T_{\max }=0.965$
3184 measured reflections

## Mo $K \alpha$ radiation

Cell parameters from 1921 reflections
$\theta=2.0-50.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colorless
$0.62 \times 0.62 \times 0.40 \mathrm{~mm}$

> 1869 independent reflections
> 1625 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.018$
> $\theta_{\max }=26.4^{\circ}$
> $h=-10 \rightarrow 10$
> $k=0 \rightarrow 12$
> $l=0 \rightarrow 22$

## Refinement

Refinement on $F^{2}$
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0473 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.079$
$S=1.00$
$(\Delta / \sigma)_{\max }<0.001$
1869 reflections
219 parameters
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

| $\mathrm{O} 1-\mathrm{C} 7$ | $1.414(2)$ | $\mathrm{O} 3-\mathrm{C} 5$ | $1.418(2)$ |
| :--- | :--- | :--- | ---: |
| $\mathrm{O} 2-\mathrm{C} 4$ | $1.428(2)$ | $\mathrm{O} 4-\mathrm{C} 14$ | $1.430(2)$ |
|  |  |  |  |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $18.1(3)$ | $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$ | $-31.6(3)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$ | $18.7(3)$ | $\mathrm{O} 4-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ | $-56.5(3)$ |

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$ | 0.84 | 2.12 | $2.920(2)$ | 160 |

Symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Hydroxyl H atoms were constrained to an ideal geometry with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ and allowed to rotate freely about their $\mathrm{C}-\mathrm{O}$ bonds. All other H atoms were constrained and allowed to ride on their C atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 1997a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1630). Services for accessing these data are described at the back of the journal.

## References

Ainsworth, P. J., Craig, D., Reader, J. C., Slawin, A. M. Z., White, A. J. P. \& Williams, D. J. (1995). Tetrahedron, 51, 11601-11622.
Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Batey, R. A., Thadani, A. N. \& Lough, A. J. (1999). J. Am. Chem. Soc. 121, 450-451.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Borg, R. M., Arnold, D. R. \& Cameron, T. S. (1984). Can. J. Chem. 62, 17851802.

Scholl, M., Ding, S., Lee, C. W. \& Grubbs, R. H. (1999). Org. Lett. 1, 953-956. Schrödinger Inc. (1998). Jaguar3.5. Schrödinger Inc., Portland, Oregon, USA. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997a). SHELXTL Reference Manual. Version 5.03. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

